Diagnostic of three-phase induction machine
based on neural networks

Rodrigo Lépez Cérdenas, Luis Pastor Sanchez Ferniandez, and
Beatriz Adriana Jaime Fonseca

Center for Computing Research
National Polytechnic Institute, México
{rodrigo,bjaime}@sagitario.cic.ipn.mx
1lsanchezQcic.ipn.mx

Abstract. Motors are essential components in most of today’s manu-
facturing and production industries. Condition monitoring of electrical
machines is a very important factor in achieving efficient operation of
industrial processes. The rigorous requirements of modern electrical ma-
chines also necessitate condition monitoring systems, which enable the
continuous monitoring of the system under all operations conditions. In
this paper, characteristic patterns of well-operation three-phase squirrel
cage induction machine are extracted from simulation, then varying some
parameters, we can observe the behavior of induction machine to detect
malfunctions.

1 Introduction

The induction machine is used in a wide of applications as means of converting
electric power to mechanical work. It is without doubt the workhorse of the
electric power industry. Pump and steel mill are applications of large multiphase
induction motors, on a smaller scale, single-phase induction motors are widely
used in household appliances as well as in hand and bench tools.

Three-phase squirrel cage induction motors are essential components in most
of today’s manufacturing and production industries. Safety, reliability, efficiency,
and performance are some of the major concerns and needs for motor systems
applications (1] [8].

Section two presents the three-phase induction machine mathematical model
and justifies the mathematical transformation from abc variables to dq variables.
Section three shows simulations of different ratings induction machine, section
four deals with well-operation patters conformation and artificial network struc-
ture finally, section five is the conclusion.

2 Induction motor model

The idealized circuit model of a three-phase induction machine is described by
six first-order differential equations, one for each winding, three of stator and
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three of rotor. Although the rotor is a squirrel cage rotor, for simulation effects,
is considered as winding rotor. These differential equations are coupled to one
another through the mutual inductances between windings. In particular, the
stator-to-rotor coupling terms are a function of rotor position, thus, when rotor
rotates, these coupling terms vary with time [2].

Changes of variables are used in the analysis of ac machines to eliminate
time-varying inductances, mathematical transformations as dq can facilitate the
computation of transient solution of the induction model machine by trans-
forming the differential equations with time-varying inductances to differentia]
equations with constant inductances, moreover, this transformation reduces tq
four the number of electrical energy storage state variables, that is, only four
first-order differential equations are needed instead six.

The transformation equation from abc variables to dg variables is given by

fq fa
fll = [quO (9) fb (1)
fO fc

where the variable f can be phase voltages, currents, or flux linkages of the
machine. The dq0 transformation matrix, [Tqao(6)] is

cosf cos 20 - 33’5; cos (6 + %";
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One of the most popular induction motor model is Krause’s model detailed
in [3], the equations in flux linkage are as follows:
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where:
d : direct axis
q : quadrature axis
s : stator variable
T : rotor variable

¥;; - flux linkage

Vgs, Uds : g and d -axis stator voltages

Ugr, Var : q and d -axis rotor voltages

Yimgs Yma : ¢ and d magnetizing flux linkage
Ts, Tr : stator and rotor resistance

I, T;r : stator and rotor leakage reactance
P : number of poles

J : moment of inertia

T, : electrical output torque

Ty, : load torque

we : stator angular electrical frequency

wp : motor angular electrical base frequency
wy : rotor angular electrical speed

For a squirrel cage induction motor as in the case of this paper, v, and vy,
are set to zero.

The induction machine dynamic equivalent circuit is shown in Fig 1, note
that E,; and E,, are the unique electrical energy storage elements. The figure
shows too the current direction and voltage bias of the transformed variables.

3 Model simulation

We start from the premise that we have only a mathematical model that sup-
poses of well-operation induction motor. From this point, the simulations are
done to various rating machine with free acceleration, that is, no-load. Then,
varying some parameters, for example, resistance, we can observe the behavior
of induction machine and extract particular conclusions.

The Table 1 shows various types of induction motor parameters, each ma-
chine is a 4-pole, 60Hz, 1800 rpm (synchronous speed) and three phase induction
motor. The parameters are expressed in ohms using the 60Hz value of the reac-
tances, the voltage is rated rms line-to-line voltage, and J includes inertia of the
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Fig. 1. Dynamic equivalent circuit of a induction machine

Fig. 2. Torque versus speed characteristics during free acceleration
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load which is assumed to be equal to the inertia of the rotor. Rotor resistance
and rotor leakage induction are referred to stator side (3] [4].

Table 1. Induction machine parameters

Motor Rating 7, Tr Tm Tls ZTir J
HP \'/ 0] N N 2 2 kg-m?
3 220 0.435 0.816 26.13 0.754 0.754 0.089
50 460  0.087 0.228 13.08 0.302 0.302 1.662
500 2300 0.262 0.187 54.02 1.206 1.206 11.06

2250 2300 0.029 0.022 13.04 0.226 0.226 63.87

The differential equations that describes the induction machine were sim-
ulated on a computer using Matlab (like presented in [5]) with parameters of
Table 1. The Fig. 2 shows the simulation reliability and depicts speed versus
time characteristics during free acceleration (no load), Fig. 3 shows all machine
variables of 3hp induction motor.
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Fig. 3. Machine variables with no-load of 3hp induction machine

Because friction and windage losses are not taken into account, the machine
accelerates to synchronous speed.

4 Characteristic patterns of operations

The characteristic patterns are conformed by nominal and dynamic variables.
The nominal variables are manufacturer values, that is, horse power, line-to-
line voltage, nominal current, revolutions per minute and number of poles; the
dynamic variables can be extracted from simulation analysis or through physical
measurements. Since non-invasively scheme proposed, we have suggested the



60 R.Lopez, L.P. Sanchez and B. Jaime

following signals and variables: peak current per phase (ip), steady current per
phase (i,), time that each current reaches its steady value (t,) and, time that
rotor speed reaches its steady value ().

Some malfunctions can be simulated varying machine parameters, for exay,
ple, stator resistance affects motor efficiency, rotor resistance also affects Moty
efficiency but, had a profound effect on the shape torque-speed curve; increag,
the phase resistance of all coils simulates an increased temperature; inter-tmn
short circuit have a cumulative effect in decreasing the magneto motive for,
(MMF), as consequence the self-inductance and resistance of this phase windjp
changes, as does the mutual inductance between that phase and all others Cir.
cuits in the machine; losses resulting from friction can be split up into COUIOmb
and Viscose friction, it can be simulated varying inertia parameter (7] [4] [6]

From above information, we can derive three kinds of situations: 1) motq,
efficiency, 2) winding performance and 3) friction problems. To simulate eag},
of this situations we have modified certain parameters, the Table 2 show the

condition types and the way of implementing.

Table 2. Condition types and its implementation

Condition Condition Type Simulation method

0 Normal None

1 Motor efficiency Increase rotor and stator resistance

2 Windings performance Decrease stator resistance and sta-
tor leakage inductance

3 Friction problems Increase value of inertia

The Fig. 4 - 6 confront the well-operating simulation (solid line) with mal-
function simulation (dashed line). The patterns to recognize malfunction or well-
operating are extracted from these results and are grouped in sets to train a
neural network. The Table 4 show some results from simulation data without
and with parameters variations such indicated above. From these data, we can
observe that the principal alterations have effect on speed curve with a dis-
placement from well-operating original curve and, with transient current, that
is, increase o decrease of its peak value.

5 Malfunction identification using neural networks

For identification, an artificial neural network (ANN) with three layers is ade-
quate due to their powerful nonlinear function approximation [8] [9] (10]. The
input neurons are determined by number of nominal and dynamic variables,
while number of output neurons are determined by the number of situations,
that is, only three neurons. Since all motors are 60Hz, 4-pole and 1800rpm;
the neuron inputs are: 1) horse power, 2) line-to-line voltage, 3-5) peak current
for each phase, 6) steady state current and 7) rotor establishment time. The
behavior of output neurons for each condition is shown in Table 3.
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Fig. 6. Friction problems simulation for patterns extraction

Table 3. Training output samples

Condition Neuron output
Neuron 1 Neuron 2 Neuron 3
Normal 0 0 0

One 1 0 0
Two 0 1 0
Three 0 0 1




62 R.Lopez. L.P. Sanchez and B. Jaime

The neural network consist of an input layer, output layer and two hidden
layers. The first hidden layer has ten neurons and the second layer six neurong,
Both hidden layers use sigmoid transfer functions, these functions compress ap,
infinite input range into a finite output range, the output layer use linear transfer
function. The training input samples for each condition are conformed as in Table
4, while the training output samples are listed in Table 3. The Fig. 7 show the

neural network architecture.

Table 4. Patterns extracted from simulating data

Condition hp volt ip in ts
3 220 102.83 6.6943 0.3915
50 220 674.20 28.097 0.5751
Normal (04 9300 1160.6 34.023 1.4945
2950 2300 6735.9 141.56 2.5369
3 220 80.037 6.6935 0.3415
50 220 552.79 28.101 0.5312
One <40 2300 1049.4 34.004 1.005
2950 2300 6297.6 141.56 1.7035
3 220 130.07 6.7904 0.3205
50 220 552.79 28.101 0.5312
Two 500 2300 1572.4 34.381 0.9897
2250 2300 9066.7 142.78 1.8453
3 220 102.98 6.6946 0.585
Three 0 220 674.78 28.737 0.8531
500 2300 1160.7 34.005 2.059
2250 2300 6736.2 151.56 3.6299

The backpropagation algorithm used during training was resilient backprop-
agation. This algorithm is used to calculate derivatives of performance with
respect to the weight and bias variables, consist of taking the derivative sign to
determine the direction of weight update, the size of weights change is deter-
mined by a separately update value [11].

The Table 5 list the neural network output results. Of these data, several con-
clusions can be extracted: although all data are within a permissible rank, there
are some deviation that neural network is difficult to identify. This drawback
can be overcome increasing training patterns in number and description quality,
in addition, increase the number of hidden layer can improve the results. Fi-
nally, the artificial neural network by itself can not provide heuristic knowledge
of the motor because of its blackbox approach, therefore, a fuzzy logic system is
a easily implement tool that utilizes heuristic reasoning and could provide extra
solutions. Clearly, all patterns are not under noise because we take a snapshot
of certain values, opposite case if we make an analysis of shape curve, where
measurements can be affected by noise.



hp
volt
1pa
ipb
1pc

n

Diagnostic of three-phase induction machine based on neural networks

Fig. 7. Neural network architecture
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Table 5. Neural network results with some patterns test versus expected values

Condition 3hp 50hp 500hp 2250
0.2539 — 0]0.3463 — 0[0.1133 — 0[0.1192 — 0
Normal 0.2314 — 0]0.3401 — 0{0.1268 — 0]0.1258 — 0
0.1773 — 0]0.0845 — 00.1159 — 0{0.1027 — 0
0.8252 — 1]0.9790 — 1[0.8802 — 1]0.9430 — 1
One -0.1540 — 0/-0.0539 — 0{-0.1070 — 0/-0.0539 — 0
0.0529 — 0-0.0257 — 0|-0.0719 — 0|-0.1099 — 0
-0.1098 — 0[-0.0931 — 0[-0.0410 — 0[-0.0602 — 0
Two 0.8760 — 1{0.8681 — 1]0.9258 — 1/0.9431 — 1
0.0233 — 0| 0.162 — 0 |-0.1034 — 0[-0.1029 — 0
-0.1599 — 0[0.0740 — 0]-0.0462 — 0/-0.0230 — 0
Three -0.1711 — 0[0.0827 — 0-0.0530 — 0|-0.0274 — 0
0.7969 — 1{1.1033 — 1[0.9683 — 1[0.9724 — 1

63
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6 Conclusions

This paper described the construction of patterns to recogni'ze diﬂ'(_zrent condj.
tion to which an induction machine can present. Through simulation analysig
by means of mathematical models as Krause’s model and tru‘nsformations as
dg, we constructed patterns for well-operating induction machine and possib]e
malfunction circumstances. In order to identify between distinct situations, the
applications of neural networks is an essential tool widely used, due to thej,
capacities of approximation. In order to optimize results, several actions cay,
be taken, for example, normalizing the values obtained by simulation can aveiq
the values' differences between low power and high power induction machine,
Obviously, increase the amount of simulating patterns can accelerate the ney.
ral network convergence and finally, experimental results will suggest possible

modifications.
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